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ABSTRACT 

In commercial breeding, new genotypes are constantly being created and need to be 

tested to understand how a specific seed will perform in its target locations. A major 

constraint is that a genotype needs to go through multiple years of testing before it can be 

commercialized. With the volume of new genotypes that are constantly being enhanced, it is 

unrealistic to test every genotype in every target environment. Here, a methodology has been 

created that considers the fact that there are limited resources, whether it be limited space or 

a limited number of each genotype available in a single planting season. This new approach 

works by using the observations of genotypes that were planted and then inferring the 

performance of specific genotypes in certain environments. For agricultural crops, not all 

genotypes respond in the same way when planted in a certain environment. This phenomenon 

is describing genotype by environment (GxE) interaction. Numerous methods exist that aim 

to predict plant performance and specifically quantify and understand the GxE interaction. 

Here, five models are first evaluated on four different crop datasets. The Biclustering model 

is one model considered and it is effective at determining which genotypes have no GxE 

interaction in a subset of environments. This model works well with sparse data which is 

what exists in practice. Therefore, the Biclustering model is used to find subsets of genotypes 

and environments that have little to no GxE interaction. 

In a subset of genotypes and environments with no interaction, genotypes can be 

planted in a strategic, methodical pattern so that the phenotype of unplanted genotypes can be 

inferred. Depending on the amount of physical resources available, two approaches can be 

utilized to gain information about unplanted genotypes. Given a set number of genotypes that 

can be planted, the first approach aims to maximize the number of known genotype/ 
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environment pairs. The term genotype/environment pair refers to the phenotype that exists 

for a single genotype in a single environment. The second approach determines how many 

observations are required to infer every genotype/environment pair within a dataset. 

Additional constraints can be introduced to create a more realistic model.  

The effectiveness of these two approaches can be illustrated using small-scale 

experimental designs that can be translated to full-scale commercial cases. In order to 

evaluate the effectiveness of the experimental designs created, both optimized and random 

models are compared to the original phenotypic responses. Validation indicates that 

optimizing the location of genotypes allows more inferences to be made, implying that 

creating an optimized planting plan can improve the understanding of genotypes. If this 

approach is applied in practice, it can facilitate further research as additional information can 

be gained from existing resources.  
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CHAPTER 1. INTRODUCTION 

In the context of commercial plant breeding, new genotypes are continuously being 

created, tested, and modified to ultimately identify genotypes that successfully generate high 

yields or another desired phenotype. For breeders to determine how a new genotype will 

perform in different environments, it ultimately must be planted in each desired environment. 

However, due to limited resources of seeds and space paired with long growing seasons, it is 

impractical and cost prohibitive to plant each genotype in every target environment. This is 

especially true because a genotype requires multiple years of testing to understand how an 

environment affects its phenotypic performance. 

To maximize the resources and time available, strategic models can be applied to gain 

the most information about how genotypes will perform, even in unplanted environments. In 

the context of crops, a phenotype is a set of observable characteristics that differentiate 

individual plants. Yield and flowering time are two phenotypic responses that can be 

measured when analyzing the performance of a genotype. The resulting phenotype of any 

crop is dependent upon how a genotype and environment interact.  

Determining the phenotype of an untested genotype is not as simple as inferring the 

response based on how a genotype performed in a nearby environment. When two genotypes 

are planted in a perceived good environment and a perceived difficult environment, there is 

no guarantee that the genotypes will respond with the same magnitude or have a direct 

relationship. This phenomenon is describing the genotype by environment (GxE) interaction. 

The GxE interaction is illustrated in Figure 1. Each line represents the performance of a 

different genotype in nine different environments. If no interaction existed, every genotype 

would respond in the same way between environments.  
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Figure 1: Example of how GxE interaction could result in a field 

Clearly, this figure includes GxE interaction. The genotype (G) main effect explains 

that the orange genotype outperforms the green genotype in every environment. The 

environment (E) main effect explains that each genotype performs better in 𝐸9 compared to 

𝐸2. When the lines are crossing, GxE interaction exists that is causing genotypes to respond 

differently between different environments. 

The genotype by environment (GxE) interaction is so fickle and difficult to quantify 

that there are numerous methods that have been proposed that aim to quantify and understand 

this interaction. These methods work similarly in most cases but may outperform other 

methods in certain instances. To determine the best approach to use for the evaluation of 

optimized planting designs, five different methods are evaluated. Each model is tested on 

four different datasets involving varying complexity of the phenotype and the crop data 

analyzed. In the order discussed, the methods include the following: Additive Model, All 

Interaction model, Regression on the Mean model, Additive Main Effects and Multiplicative 

Interactions model, and Biclustering model.  
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CHAPTER 2. BENCHMARKING EXISTING AND PROPOSED MODELS 

2.1 Quantifying GxE – Existing Models 

In the first four models, which were collectively analyzed by Malosetti et al. (2013), 

there is a heavy reliance on statistics to assist in describing and understanding the GxE 

interaction. The Additive Model is a simple approach that models the phenotype (𝜇𝑖𝑗)  as a 

sum of two main factors, genotype (𝐺𝑖) and environment (𝐸𝑗). This model focuses on 

genotypes 𝑖 ∈ 𝐼 and environments 𝑗 ∈ 𝐽. This simple no-interaction model can be modeled as 

followed. 

𝜇𝑖𝑗 =  𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝜖𝑖𝑗 

In each equation, 𝜇 is a mean value that exists in the absence of (𝐺𝑖) and (𝐸𝑗) while 

𝜖𝑖𝑗 encompasses the normal error. In the Additive Model, the interaction of 𝐺𝑖 and 𝐸𝑗 do not 

help predict the phenotype (𝜇𝑖𝑗). As aforementioned, it is not realistic to assume that the 

phenotype can be modeled as only a combination of genotype and environment main effects. 

Therefore, the next model, All Interaction, aims to incorporate the GxE interaction.  

𝜇𝑖𝑗 =  𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝐺𝐸𝐼𝑖𝑗 + 𝜖𝑖𝑗 

The All Interaction model has the same structure as before with the addition of the 

term representing the GxE interaction (𝐺𝐸𝐼𝑖𝑗). A third model included in the comparison, 

that was introduced by Finlay et al. (1963), is the Regression on the Mean model. This 

approach aims to explain more of the GxE interaction by including a different variable in the 

model. The 𝐺𝐸𝐼𝑖𝑗 term is treated as a regression line on the quality of an environment. The 

quality is quantified by analyzing the average phenotype of all genotypes planted in that 

environment.  

𝜇𝑖𝑗 =  𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝑏𝑖𝐸𝑗 + 𝜖𝑖𝑗 
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In the Regression on the Mean Model, the term 𝑏𝑖𝐸𝑗 aims to encompass the GxE 

interaction effect and represents the regression on the environment (E) main effect. The 

fourth model discussed by Gollob (1968) is the Additive Main Effects and Multiplicative 

Interactions (AMMI) model. It is less constrained and allows more than one environmental 

quality variable to be used where there are 𝐾 multiplicative terms. 

𝜇𝑖𝑗 =  𝜇 + 𝐸𝑗 + ∑ 𝑏𝑖𝑘𝑧𝑗𝑘

𝐾

𝑘=1

+ 𝜖𝑖𝑗 

The variable 𝑏𝑖𝑘 represents the sensitivity of a genotype and 𝑧𝑗𝑘 represents the quality of the 

environment. This model can be thought of as using the principal components to quantify 

GxE interaction.  

2.2 Biclustering Model 

Knowing that the interaction between genotypes (G) and environments (E) can 

complicate the understanding of how a genotype will respond in certain environments, the 

Biclustering model aims to strategically group genotypes and environments into subsets, 

referred to as cells, where each single cell has no GxE interaction. To model the phenotypic 

response of a dataset, a two-way table (grid) with genotype as the rows (m) and environment 

as the columns (n) can be constructed. If each genotype in every environment is treated as its 

own no-interaction cell, then mxn no-interaction models exist. The overall GxE interaction 

for a dataset is determined by analyzing the differences that exist between all of the no-

interaction models. The key to success for the Biclustering model is its ability to 

methodically group the genotypes and environments into homogeneous cells where the 

phenotype can be strictly attributed to the genotype and environment. This homogeneous cell 

is referred to as a no-interaction cell because the phenotypes can be expected to respond in 
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the same way if a genotype is planted in different environments within the cell. The goal is 

that the individual cells can be grouped together and still have no interaction so that the GxE 

interaction can be described with less complexity.  

A no-interaction cell implies that the genotypes and environments within the cell can 

be modeled with the Additive Model where genotype and environment alone determine the 

resulting phenotype. Figure 2 illustrates how a complex model with each genotype/ 

environment pair acting as a single no-interaction cell can be shuffled to find sets of perfectly 

linear cells where the interaction among certain genotypes in set environments is negligible.  

 
Figure 2: Illustration of how biclustering adds order to a perceived complex model 

Graphically, a model with no interaction would have genotypes represented by parallel lines 

that respond to the set of environments in the exact same manner. This is shown in Figure 3 

in the No Interaction graph. The remaining three graphs show forms of interaction that 

ultimately complicate the understanding of phenotypic performance. 
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Figure 3: Four varying examples of how GxE interaction can occur 

2.3 Benchmarking 

The five models just described are summarized in the table below. These five models 

were evaluated on four datasets of differing crops with varying complexity. ANOVA tables 

were constructed to quantify how much each term was contributing to the sum of squares and 

to the complexity of the model. Understanding the residual error that exists in each model is 

the key focus. 

Table 1: Varying models that are used to quantify the GxE interaction 

 Model Formulation 

(1) Additive Model (No-interaction) 𝜇𝑖𝑗 =  𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝜖𝑖𝑗 

(2) All Interaction 𝜇𝑖𝑗 =  𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝐺𝐸𝐼𝑖𝑗 + 𝜖𝑖𝑗 

(3) Regression on the Mean 𝜇𝑖𝑗 =  𝜇 + 𝐺𝑖 + 𝐸𝑗 + 𝑏𝑖𝐸𝑗 + 𝜖𝑖𝑗 

(4) Additive Main Effects and 

Multiplicative Interactions (AMMI) 𝜇𝑖𝑗 =  𝜇 + 𝐸𝑗 + ∑ 𝑏𝑖𝑘𝑧𝑗𝑘

𝐾

𝑘=1

+ 𝜖𝑖𝑗 

(5) Biclustering Combination of Additive Models for each cell 

 

The Additive Model and All Interaction model are the two extremes of quantifying 

GxE interaction. When a dataset only has one observation of a genotype in each 

environment, all of the GxE interaction in the no-interaction model will be in the error term. 
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On the contrary, all of the GxE interaction in the All Interaction model will be included in the 

interaction term and no residual error will result. Therefore, Model (3), Model (4), and Model 

(5) will be the focus when comparing the effectiveness of each method. Table 2 presents the 

four crops that will be compared along with the phenotype that is measured. In terms of 

ability to quantify the GxE interaction, crops can be categorized as a simple or complex crop. 

The phenotype analyzed can also affect the results. Flowering time is easier to predict than 

yield. The data that is used for this comparison has varying amounts of missing data. With 

the more traditional approaches, incomplete data can negatively affect the ability of the 

model to capture the GxE interaction.   

Table 2: Data information of the crops that are used to compare models 

Crop Phenotype Genotypes Environments Missing Data 

Sorghum Flowering Time 237 7 1.5% 

Rice Flowering Time 176 9 2.8% 

Maize Yield 211 8 0.0% 

Soybean Yield 132 73 72.9% 

 

2.3.1 Sorghum 

In the following ANOVA tables, the sum of squared error (SSE) and degrees of 

freedom are the measures compared between models. The goal of each model is to most 

accurately predict the phenotype. All else equal, a model with a higher SSE and lower 

residual degrees of freedom is preferred because the model is capturing more of the GxE 

interaction with less complexity. In Model (3) – Model (5), the residual degrees of freedom 

can be analyzed as a measure of the complexity of the model. Table 3 – Table 6 illustrate the 

results of applying the first four models to the sorghum dataset obtained from Li et al. (2018). 

This dataset has 97% complete data for 236 genotypes evaluated in seven locations. The 

phenotypic response is flowering time. In the Additive Model shown in Table 3, the resulting 

SSE is more than the sum of squares that is captured by the G main effect. In the All 
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Interaction model, all of the error is captured in the GxE term; however, the model is as 

complex as it can be with no residual degrees of freedom. The Regression on the Mean and 

AMMI model in Table 5 and Table 6, respectively, both meaningfully manipulate the data to 

capture the GxE interaction. Therefore, these two models will be compared directly to the 

Biclustering model to determine its effectiveness.  

 

 

Introducing the Regression of E term to Table 5 allows the model to explain as much 

about the data as the G main effect. The first principal component in the AMMI model 

explains more than the G main effect and, compared to the Regression on the Mean model, 

the complexity is comparable. For the sorghum data, the AMMI model has the lowest SSE so 

its results will be compared to the Biclustering model. 

The Biclustering model is very flexible. Depending on the number of row and column 

clusters created, the model can be as simple or as complex as the desired application.  In 

order to compare the Biclustering model to the others just described, the number of row and 

column clusters that are constructed in the model are selected so that the residual degrees of 

freedom of the AMMI model with two principal components and the Biclustering model 

Table 3: No-interaction Model of Sorghum 

Model 
Main 

Effect 
D.F. S.S. 

No 

Interaction 

 

  

G 236 53,020,738 

E 

  

6 

  

199,593,392 

  
Error 1,367 67,635,610     

Table 4: All Interaction Model of Sorghum 

Model 
Main 

Effect 
D.F. S.S. 

All 

Interaction 

  

G 236 53,020,738 

E 6 199,593,392 

GxE 1367 67,635,610 

Error 0 0    

Table 5: Regression on Mean Model of Sorghum 

Model 
Main 

Effect 
D.F. S.S. 

Regression 

on Mean 

 

 

  

G 236 53,020,738 

E 6 199,593,392 

Reg of E 

 

236 

 

52,422,217 

 

Error 1131 15,213,393     

Table 6: AMMI Model of Sorghum 

Model 
Main 

Effect 
D.F. S.S. 

AMMI G 236 52,973,148 
 E 6 199,640,982 

 PC1 241 53,483,854 

 PC2 239 5,581,472 
 Error 887 7,570,284 
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match. If the SSE of the Biclustering model is lower than the AMMI model, it indicates that 

the Biclustering model is just as effective or better than the AMMI model.  

Because the Biclustering model is dynamic, the model was explored to determine if 

there was an optimal set of row and column clusters that captured the sum of squares without 

adding the same degree of complexity. Figure 4 illustrates how the SSE changes based on 

varying the number of row and column clusters and degrees of freedom. The change is linear, 

so the final row and column clusters utilized can be determined based on the goals of the 

users. This general pattern was observed for each dataset.  

         
Figure 4: Variation in SSE resulting from differing row and column clusters and degrees of freedom 

In order to get the Biclustering model to have a residual error around 887 like the 

AMMI model, the sorghum data was strategically split into two rows and three columns, as 

shown in Figure 5. For the biclustering algorithm to determine which cell the environments 

and genotypes should be put into, the differences of the phenotype from the environment 

average was used as the measure. This measure was used for every dataset for consistency 

purposes. 

Blue = 2 Col 
Red = 4 Col 
Green = 6 Col 
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Figure 5: Heat Map of Shuffled Sorghum Data (2x3) 

Splitting the data into two rows and three columns results in a residual degree of freedom of 

896, as seen in Table 7. The SSE is slightly less than the SSE of the AMMI model, but the 

residual degrees of freedom is higher for the Biclustering model. Therefore, the Biclustering 

model is just as effective as the other models evaluated when applied to the sorghum data.  

Table 7: Biclustering Model of Sorghum 

Model Main Effect D.F. S.S. 

Biclustering G 236 53,020,738 
 E 6 199,593,392 

 No Int Cells 471 60,230,522 
 Error 896 7,405,088     

 

When the biclustering algorithm is shuffling the data, the exact same genotypes and 

environments are not always put into the same cluster as the previous run. Therefore, the 

biclustering algorithm was run multiple times to find the minimum SSE possible which is 

recorded in Table 8.  Running the algorithm multiple times also indicates how much 

variability exists in the model.  

Table 8: Variation in Biclustering Model 

Variability in Residual Sum of Squares (Sorghum) 
Minimum 7,405,088 
Maximum 11,437,121 
Average 10,223,972 

Standard Deviation 1,741,186 
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2.3.2 Rice 

The rice dataset is the next case that is compared. The phenotypic response here is 

also flowering time. The number of row and column clusters that were selected in this 

example for biclustering were again selected so that the Biclustering model and the AMMI 

model both had comparable residual degrees of freedom. Table 9 – Table 12 show the 

residual error for each model. In this dataset, the G and E main effects were able to explain 

much more of the model compared to the sorghum data. The AMMI model was further able 

to explain more than 90% of the original error with only two principal components.  

 

 

The Biclustering model with similar complexity to the AMMI model splits the data into three 

row (genotype) clusters and three column (environment) clusters, as seen in Figure 6.  

Table 9:  No-interaction Model of Rice 

Model 
Main 

Effect 
D.F. S.S. 

No 

Interaction 

 

  

G 175 134,189 

E 

  

8 

  

485,135 

  
Error 1,355 58,071     

Table 10: All Interaction Model of Rice 

Model 
Main 

Effect 
D.F. S.S. 

All 

Interaction 

  

G 175 134,189 

E 8 485,135 

GxE 1,355 58,071 

Error 0 0     

Table 12:  AMMI Model of Rice 

Model 
Main 

Effect 
D.F. S.S. 

AMMI G 175 134,495 
 E 8 484,919 

 PC1 182 47,971 

 PC2 180 4,272 
 Error 993 5,828 

Table 11:  Regression on Mean Model of Rice 

Model 
Main 

Effect 
D.F. S.S. 

Regression 

on Mean 

 

 

  

G 175 134,189 

E 8 485,135 

Reg of E 

 

175 

 

41,697 

 

Error 1,180 16,374 
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Figure 6: Heat Map of Shuffled Rice Data (3x3) 

The residual degrees of freedom and sum of squares of the Biclustering model is 

compiled in Table 13. In this case, the sum of squared error for the Biclustering model is 

more than that of the AMMI model, but the two are comparable.  

Table 13: Biclustering Model of Rice 

Model Main Effect D.F. S.S. 

Biclustering G 175 134,189 
 E 8 485,135 

 No Int Cells 362 51,586 
 Error 993 6,485 
    

 
Because the biclustering algorithm can have varying results depending on how well the 

algorithm is able to correctly group the genotypes and environments, multiple iterations were 

run to determine the minimum error that can result with a 3x3 cell. The results are compiled 

in Table 14. 

Table 14: Variation in Biclustering Model 

Variability in Residual Sum of Squares (Rice) 

Minimum 6,485 

Maximum 11,747 

Average 7,345 

Standard Deviation 1,284 

 

2.3.3 Maize  

The third dataset that was used to compare the linear models to the Biclustering 

model was the maize data. Introduced by Ribaut et al. (1996, 1997) and used by Malosetti et 
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al. (2013), in this dataset, 210 genotypes were planted in seven different environments. The 

sum of squared error in the no-interaction model is more than the sum of squares that can be 

described by the genotype (G) main effect. When applying each model, the lowest SSE again 

results from the AMMI model as seen in Table 15 – Table 18. 

 

 

The Biclustering model uses a 3x3 cell to estimate the GxE interaction. The resulting 

Biclustering model can be seen in Figure 7. 

 
Figure 7: Heat Map of Shuffled Maize Data (3x3) 

Like the rice dataset, the SSE that results from the biclustering algorithm is slightly higher 

than what was achieved by the AMMI model. This is shown in Table 19. The methods are 

still comparable; the linear models just outperform the Biclustering model in this case. Like 

Table 15: No-interaction Model of Maize 

Model 
Main 

Effect 
D.F. S.S. 

No 

Interaction 

 

  

G 210 614 

E 

  

7 

  

5,679 

  
Error 1,470 813     

Table 16: All Interaction Model of Maize 

Model 
Main 

Effect 
D.F. S.S. 

All 

Interaction 

 

  

G 210 614 

E 7 5,679 

GxE 1,470 813 

Error 0 0     

Table 18: AMMI Model of Maize 

Model 
Main 

Effect 
D.F. S.S. 

AMMI G 210 614 
 E 7 5,679 

 PC1 216 242 

 PC2 214 173 
 Error 1,040 398 

Table 17: Regression on Mean Model of Maize 

Model 
Main 

Effect 
D.F. S.S. 

Regression 

on Mean 

  

G 210 614 

E 7 5,679 

Reg of E 

 

210 

 

230 

 
 Error 1,260 583     
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the other models, the variation in the Biclustering model was analyzed to understand the 

stability of the Biclustering model on the Maize data. This is illustrated in Table 20. 

Table 19: Biclustering Model of Maize 

Model Main Effect D.F. S.S. 

Biclustering 

  

G 210 614 

E 7 5,679 

No Int Cells 425 349 
 Error 1,045 464     

 
Table 20:  Variation in Biclustering Model 

Variability in Residual Sum of Squares (Maize) 
Minimum 464 
Maximum 558 
Average 492 

Standard Deviation 40 
 

2.3.4 Soybean 

The most important comparison made in the context of this paper is the 

benchmarking done on the soybean dataset. This dataset was collected commercially by 

Syngenta Seeds and contains a large amount of missing data. The first three datasets 

evaluated were relatively complete and the Biclustering model was a contender in the 

effectiveness of the model. However, in commercial practice, it is more common to have 

missing data in the sense that not every genotype is planted in every location so the 

biclustering cell (m rows and n columns) becomes sparse. Prior to the introduction of the 

Biclustering model, there was not a model that was effective at quantifying the GxE 

interaction when the data was mostly incomplete. Table 21 – Table 24 show the error that the 

linear models attained. For the no-interaction model, the SSE was double what the genotype 

(G) term was able to quantify, and the AMMI model was only able to reduce the SSE by less  

than 20%.  
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The results of splitting the 131 genotypes and 72 environments into three rows and 

three columns can be seen in Figure 8. 

 
Figure 8: Heat Map of Shuffled Soybean Data (3x3) 

With a 3x3 cell, the complexity of the model is less than that of the AMMI model and the 

SSE is lower. The results of the Biclustering model is depicted in Table 25. The results show 

that the Biclustering model was able to outperform the best linear model, AMMI, in terms of 

complexity and residual error.  

  

Table 21: No-interaction Model of Soybean 

Model 
Main 

Effect 
D.F. S.S. 

No 

Interaction 

 

  

G 131 26,098 

E 

  

72 

  

187,595 

  
Error 2,407 51,706 

    

Table 22: All Interaction Model of Soybean 

Model 
Main 

Effect 
D.F. S.S. 

All 

Interaction 

 

  

G 131 26,098 

E 72 187,595 

GxE 2,407 51,706 

Error 0 0 
    

Table 23: Regression on Mean Model of Soybean 

Model 
Main 

Effect 
D.F. S.S. 

Regression 

on Mean 

 

 

  

G 131 26,098 

E 72 187,595 

Reg of E 

 

107 

 

4,028 

 

Error 2,300 47,679     

Table 24: AMMI Model of Soybean 

Model 
Main 

Effect 
D.F. S.S. 

AMMI G 131 14,975 
 E 72 198,719 

 PC1 202 4,590 

 PC2 200 3,971 
 Error 2,005 43,144 
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Table 25: Biclustering Model of Soybean 

Model Main Effect D.F. S.S. 

Biclustering 

 

  

G 131 26,098 

E 72 187,595 

No Int Cells 333 17,947 

Error 2,074 33,759     

 

It is even more reassuring in the effectiveness of the Biclustering model because even with 

variation, the maximum error calculated for the Biclustering model still captures more of the 

GxE interaction than any other linear model. The amount of variability in the Biclustering 

model is illustrated in Table 26. 

Table 26: Variation in Biclustering Model 

Variability in Residual Sum of Squares (Soybean) 
Minimum 33,759 
Maximum 39,911 
Average 37,057 

Standard Deviation 925 
 

When there is no interaction between the genotype and environments within a cell, 

one can predict how a genotype will perform in an unplanted environment within a cell. This 

concept is crucial for the models that have been constructed. Within a no-interaction cell, the 

phenotype of one genotype in an unplanted environment can be inferred based on how the 

phenotypes differed between two genotypes planted in the same environment. In other words, 

inferences can be made for genotypes in untested environments based directly from an 

observation of another genotype planted in that environment.  

The Biclustering model outperforms the other models when using sparse data. The 

data used to demonstrate the effectiveness of the proposed optimization model is sparse data, 

which is representative of what happens commercially in the agricultural industry. Therefore, 

the Biclustering model is used extensively for the remainder of the discussion. Finding sets 

of genotypes and environments that interact in the same way is crucial in implementing the 
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methodology utilized in this research. Each specific set of genotypes and environments can 

be referred to as a cell. There are a variety of ways that the genotypes can be planted to gain 

enhanced information. Several experimental designs are created and explored to examine the 

effectiveness of differing planting patterns. 

Each experimental design has the goal of inferring the most genotype/environment 

pairs by strategically planting the limited resources. Two complementary methodologies can 

be utilized depending on the number of genotypes and other limited resources available. The 

approaches differ based on whether it is feasible to infer every genotype/environment pair. 

The first approach represents a common case. If a limited number of genotypes can be 

planted across all environments, the approach determines how genotypes can be arranged in 

order to maximize the number of genotype/environment pairs that can be inferred. The 

second approach is the ideal case where the objective is to determine how many 

genotype/environment pairs need to be planted, so that every pair can be inferred within a 

dataset. A variety of small-scale experimental designs are constructed with logical constraints 

based on the two methodologies discussed. The intention is for these small-scale 

experimental designs to be duplicated in a larger scale for the use by commercial breeders. 
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CHAPTER 3. MATERIALS AND METHODS 

Optimization formulations were developed to solve the two methodologies. For both, 

genotype/environment pairs are either tested (planted) or inferred. Minimally, one connection 

is required to make an inference for a genotype/environment pair. In order to create a 

connection, the desired genotype (g) needs to be planted in the same environment (e’) as 

another known genotype (g’). The known genotype (g’) also needs to be planted in the 

environment (e) of the desired genotype (g). This situation is illustrated in Figure 9. This 

connection can come from any genotype/environment pair within a no-interaction cell. The 

connection becomes void across cells.  

G
en

o
ty

p
e 

1  -  (𝒀𝒈𝒆′)  (𝒙𝒈𝒆′) 

2  -     

3  -  (𝒙𝒈′𝒆)  (𝒙𝒈′𝒆′) 

4  -     

  - - - - 

   1  2  3  4 

  Environment 

Figure 9: Illustration of how an inference can be made to predict an unobserved genotype/environment 

pair 𝒀𝒈𝒆 based on the phenotypes of 𝒙𝒈′𝒆 , 𝒙𝒈𝒆′ and 𝒙𝒈′𝒆′ . 

 

To solve the first approach, a maximization formulation has been constructed. The 

objective of this approach is to maximize the number of genotype/environment pairs that can 

be inferred. The constraint is the set number of genotypes that can be planted across the 

environments. The premise is that more genotype/environment pairs can be inferred if the 

limited resources are strategically planted. Each variable is binary. 
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3.1 Approach 1 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒:    

 ∑ ∑ 𝑌𝑔𝑒

𝑒

 

𝑔

 
 1(a) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    

 ∑ ∑ 𝑥𝑔𝑒 ≤ 𝑃

𝑒𝑔

 
 1(b) 

 ∑ ∑ 𝑥𝑔𝑒′ ∗ 𝑥𝑔′𝑒 ∗ 𝑥𝑔′𝑒′ + 𝑥𝑔𝑒 ≥ 𝑌𝑔𝑒

𝑒′𝑔′

   ∀  𝑔𝑒 ∈ 𝑍𝑖   1(c) 

where: 

𝑥𝑔𝑒 = {
1   genotype (g) planted in environment (e)       

0   genotype (g) not planted in environment (e)
  

𝑌𝑔𝑒 =  {
1   genotype (g) planted or reached in environment (e)          

0   genotype (g) not planted nor reached in environment (e)
 

𝑃 = maximum number of genotype/environment pairs to be planted  
𝑍𝑖 =  cell of genotypes and environments determined to be related 
 

Equation 1(c) is used to determine whether a genotype/environment pair can be 

inferred. It involves multiplying all three variables together. If the product is zero, it implies 

that no connections were made for the specific pair. Although useful, this formulation makes 

this optimization model non-linear. In order to ensure convergence to an optimal solution, 

Equation 1(c) was linearized in the following manner. Where multiplication of variables 

exists in the problem formulations, the following linearization is applied. 
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Linearization of Variable Multiplication: 

𝐴𝑔𝑒𝑔′𝑒′ ≤ 𝑥𝑔′𝑒 ∀  𝑔𝑒𝑔′𝑒′ ∈ 𝑍𝑖 2(a) 

𝐴𝑔𝑒𝑔′𝑒′ ≤ 𝑥𝑔𝑒′ ∀  𝑔𝑒𝑔′𝑒′ ∈ 𝑍𝑖 2(b) 

𝐴𝑔𝑒𝑔′𝑒′ ≥ 𝑥𝑔′𝑒 + 𝑥𝑔𝑒′ − 1 ∀  𝑔𝑒𝑔′𝑒′ ∈ 𝑍𝑖 2(c) 

𝐵𝑔𝑒𝑔′𝑒′ ≤ 𝐴𝑔𝑒𝑔′𝑒′ ∀ 𝑔𝑒𝑔′𝑒′ ∈ 𝑍𝑖 2(d) 

𝐵𝑔𝑒𝑔′𝑒′ ≤ 𝑥𝑔′𝑒′ ∀ 𝑔𝑒𝑔′𝑒′ ∈ 𝑍𝑖 2(e) 

𝐵𝑔𝑒𝑔′𝑒′ ≥ 𝐴𝑔𝑒𝑔′𝑒′  + 𝑥𝑔′𝑒′ − 1 ∀ 𝑔𝑒𝑔′𝑒′ ∈ 𝑍𝑖 2(f) 

𝑌𝑔𝑒 ≤  ∑ ∑ 𝐵𝑔𝑒𝑔′𝑒′

𝑒′

+ 𝑥𝑔𝑒

𝑔′

 ∀ 𝑔𝑒 ∈ 𝑍𝑖 2(g) 

where: 

𝑥𝑔𝑒 = {
1   genotype (g) planted in environment (e)       

0   genotype (g) not planted in environment (e)
  

𝑌𝑔𝑒 =  {
1   genotype (g) planted or reached in environment (e)          

0   genotype (g) not planted nor reached in environment (e)
 

𝐴𝑔𝑒𝑔′𝑒′ =  {
1   𝑥𝑔′𝑒 and 𝑥𝑔𝑒′ were both planted                           

0   at least one of  𝑥𝑔′𝑒 and 𝑥𝑔𝑒′ were not planted 
 

𝐵𝑔𝑒𝑔′𝑒′ =  {
1   𝑥𝑔′𝑒 , 𝑥𝑔𝑒′ , and 𝑥𝑔′𝑒′ were both planted                           

0   at least one of 𝑥𝑔′𝑒 , 𝑥𝑔𝑒′ , and 𝑥𝑔′𝑒′ were not planted 
 

𝑍𝑖 =  cell of genotypes and environments determined to be related 

 

For the second approach, a minimization formulation has been constructed. The 

objective of this approach is to minimize the number of genotype/environment pairs that 

needs to be planted. In this approach, a specified number of genotype/environment pairs must 

be observed or inferred. 
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3.2 Approach 2 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:    

 ∑ ∑ 𝑥𝑔𝑒

𝑒𝑔

 
 3(a) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    

 ∑ ∑ 𝑌𝑔𝑒 ≥ 𝐷

𝑒𝑔

 
 3(b) 

 ∑ ∑ 𝑥𝑔𝑒′ ∗ 𝑥𝑔′𝑒 ∗ 𝑥𝑔′𝑒′ + 𝑥𝑔𝑒 ≥ 𝑌𝑔𝑒

𝑒′𝑔′

   ∀  𝑔𝑒 ∈ 𝑍𝑖   3(c) 

where: 

𝑥𝑔𝑒 = {
1   genotype (g) planted in environment (e)       

0   genotype (g) not planted in environment (e)
  

𝑌𝑔𝑒 =  {
1   genotype (g) planted or reached in environment (e)          

0   genotype (g) not planted nor reached in environment (e)
 

𝐷 = desired amount of genotype/environment pairs to be planted and inferred  
𝑍𝑖 =  cell of genotypes and environments determined to be related 

 

With the simple constraints of the approaches above, the required minimum number 

of genotypes planted is the sum of genotypes (m) and environments (n) minus one (m+n-1). 

In the simplest of cases, this optimal solution can be achieved by planting an “L”, “T”, or 

some variation of the shape. This implies that all pairs can be inferred by planting every 

genotype in one environment and planting one genotype in every environment. Three 

variations of this case are illustrated in Figure 10. 

 

 1   -       1 -       1 -     

G
en

o
ty

p
e 

2   -       2 -       2 -     

3   -       3 -       3 -     

4   -       4 -       4 -     

5   -       5 -       5 -     

6   -       6 -       6 -     

  - - - -    - - - -    - - - - 

   1  2  3  4     1  2  3  4     1  2  3  4 

      Environment     

Figure 10: Three variations of the minimum required planting locations to infer an entire cell.  
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The situations illustrated achieve the goal of reaching every location; however, in 

practice, this is not a realistic or a commonly applied approach. Therefore, additional 

constraints are introduced to better represent current practices while making an improvement 

to the current system. The following constraints can be added in any combination to the 

model for either approach to create a more realistic set of experimental designs.  

3.3 Additional Constraints 

The following constraint singlehandedly ensures that the algorithm does not plant 

every genotype in only one environment. This constraint limits the number of genotypes that 

can be planted in any one environment. 𝑆𝑖 is the maximum number of genotypes that can be 

planted in an environment and it can be modified to resemble the goal of the experiment. 

Constraint 1: 

∑ 𝑥𝑔𝑒 ≤ 𝑆𝑖

𝑔

 ∀  𝑒 ∈ 𝑍𝑖 (4) 

where: 

𝑥𝑔𝑒 = {
1   genotype (g) planted in environment (e)       

0   genotype (g) not planted in environment (e)
  

𝑆𝑖 =  maximum number of genotypes to be planted in any one environment  
𝑍𝑖 =  cell of genotypes and environments determined to be related 

 

The next constraint aims to ensure that a genotype is planted in more than one 

environment. In order to learn more about how the genotype performs in a variety of 

environments, it should be planted in at least a few different environments.  

  



www.manaraa.com

23 
 

Constraint 2: 

∑ 𝑥𝑔𝑒 ≤ 𝑊𝑖 (𝐶𝑖 + 1)

𝑒

 ∀  𝑔 ∈ 𝑍𝑖 5(a) 

∑ 𝑥𝑔𝑒 ≥ 𝐿𝑖 ∗ 𝑊𝑖

𝑒

 ∀  𝑔 ∈ 𝑍𝑖 5(b) 

where: 

𝑥𝑔𝑒 = {
1   genotype (g) planted in environment (e)       

0   genotype (g) not planted in environment (e)
  

𝑊𝑖 = {
1   indicator that requirement was met       
0   indicator that requirement was not met

 

𝐶𝑖 = number of environments in cell i 

𝐿𝑖 = minimum number of environments a specific genotype has to be planted in’ 

𝑍𝑖 =  cell of genotypes and environments determined to be related 

 

The third constraint is particularly beneficial when a Biclustering model is not 

completely linear. This constraint sets a minimum number of connections that needs to be 

formed before a genotype/environment pair can be inferred. With this constraint, the breeder 

can specify the number of connections desired before an inference can be made. The more 

phenotypic responses averaged together, the more realistic the inference will be.  

Constraint 3:  

∑ ∑ 𝑥𝑔𝑒′ ∗ 𝑥𝑔′𝑒 ∗ 𝑥𝑔′𝑒′ + 𝑀𝑖 ∗ 𝑥𝑔𝑒 − 𝑀𝑖 + 1 ≥ 𝑌𝑔𝑒

𝑒′𝑔′

 ∀  𝑔𝑒 ∈ 𝑍𝑖 (6) 

where: 

𝑥𝑔𝑒 = {
1   genotype (g) planted in environment (e)       

0   genotype (g) not planted in environment (e)
  

𝑌𝑔𝑒 =  {
1   genotype (g) planted or reached in environment (e)          

0   genotype (g) not planted nor reached in environment (e)
 

𝑀𝑖 = minimum number of connections required to infer a genotype/environment  
𝑍𝑖 =  cell of genotypes and environments determined to be related 

 

 Adding constraints to Approach 1 and Approach 2 can cause the resulting planting 

plan to change. Figure 11 illustrates one example of how a planting plan for a 6x4 cell varies 

with additional constraints when a maximum of nine genotype/environment pairs can be 
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planted. Figure 11(a) has no additional constraints. Figure 11(b) – Figure 11(d) reflect 

Constraint 1 – Constraint 3, respectively. 

 
Figure 11: Examples of how additional constraints influence the planting design. Plot A – Set number of 

genotype/environment pairs planted, Plot B – Maximum number of genotypes in a certain environment, 

Plot C – Minimum number of environments planted if a genotype is planted, Plot D – Specified number 

of connections required for an unplanted environment to be inferred 

 

In order to measure the success of the optimized models, each time that the model is 

evaluated, identical constraints are applied to a random model. With randomness, there will 

be the same or fewer pairs that can be inferred because no thought went into the placement of 

genotype/environment pairs. 

This research problem is a two-step problem. Optimizing a planting plan is the first 

step. The goal of each experimental design is to infer as many pairs/cells as possible. It is 

understood that there are some planting designs with numerous optimal solutions in terms of 

how a grid can be structured regarding what cells are planted and which are inferred. For the 

evaluation below, each example uses only one of the optimal solutions produced. The next 

steps in the process are built upon the chosen optimal solution. After an optimal planting 

design has been determined, the effectiveness of the model is tested.  

The biclustering algorithm is applied to three different datasets to identify genotypes 

and environments that have little to no interaction in each. For this research, the biclustering 

algorithm is serving as a way to determine genotypes and environments that have minimal 

interaction, implying that the phenotypes respond in the same manner. To compare the 
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optimized planting plan to a random plan, the phenotypic responses of the complete cells, 

that were determined by the biclustering algorithm, are going to be treated as the ground 

truth. The optimized and random plans will specify which cells will contain the true, 

observed phenotypic data. Only the cells deemed planted by the optimization model will 

have the phenotypic data inserted; the remainder will be blank initially. The phenotypes of 

those blank (unplanted) cells will be inferred, if possible, based on the connections that were 

formed. These inferences can be made by taking the difference of phenotypes in an 

environment where both were planted and applying that difference in an unknown 

environment. The cells that are not inferred from the planted locations use row and column 

averages if possible or are left blank.  

Once the experimental designs have the planted and inferred phenotypic responses 

input, the next step is to compare the amount of error that exists between the optimized or 

random models and the original data.  
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CHAPTER 4. RESULTS AND DISCUSSION 

To evaluate the effectiveness of the different experimental designs, the phenotypic 

values from the original bicluster cell are compared to estimates using models generated 

from the optimized and random experimental designs. First, complete experimental planting 

designs are compared to designs where the cell cannot be fully inferred. By reducing the 

number of planting locations that can be observed, the experimental design becomes scarcer. 

4.1 Complete vs. Incomplete Design 

To illustrate the effect of limiting the number of planted genotype/environment pairs, 

a series of plots was created and evaluated using three different datasets. A dataset containing 

six genotypes and four environments was constructed to illustrate how strategically placing 

pairs in a no-interaction cell leads to more information gain and less error than if the identical 

number of observations was planted at random. Figure 12 shows how many pairs can be 

inferred as the number of observations are reduced from twelve to eight using the 

optimization models described above. For this case, the number of pairs planted is the main 

constraint and only one connection is required to make an inference for the phenotype.  

 

 A) Optimized – 

Plant 12 

 

 B) Optimized – 

Plant 11 

 

 C) Optimized – 

Plant 10 

Optimized – 

Plant 12 

Optimized – 

Plant 12 

Optimized – 

Plant 12 

Optimized – 

Plant 12 

 

 D) Optimized – 

Plant 9 

 

 E) Optimized – 

Plant 8 

Optimized – 

Plant 12 
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Figure 12: Results of using optimization to create a planting design where planted pairs are reduced from 

12 to 8. 
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Figure 13 illustrates the same situation as Figure 12 except in this case; the pairs are 

randomly selected. When randomly selecting the experimental design, there is not a case 

where all of the pairs can be inferred.  
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Figure 13:  Results of randomly placing observations to create a planting design where planted pairs are 

reduced from 12 to 8. 

 

In each case in this section, two no-interaction cells were constructed using the biclustering 

algorithm. Figure 14 – Figure 16 illustrate the original data that was reshuffled into two no-

interaction cells. This data is the ground truth that every design is attempting to achieve. In 

Figure 14, each biclustering cell is perfectly linear and therefore has no interactions. This 

implies that the Additive Model has a residual sum of squares of zero.  

The model that these results were obtained from required one connection. When the 

model is completely linear, having one or multiple connections will lead to equivalent results 

for inferred phenotypes. When the cell is not perfect, adding more connections is a way to 

gain additional understanding of what the phenotype for an unplanted pair would be. Figure 

14 – Figure 16 illustrate the two cells that the biclustering algorithm created along with the 

phenotypic values of each pair. Figure 15 and Figure 16 use the sorghum and rice data for the 

evaluation. These two datasets were planted in academic studies. With academically 
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collected data, more factors can be monitored compared to commercial practice. Therefore, 

this data is the next best alternative to a constructed, perfectly linear model. 

             
Figure 14: In order from left to right, the original data of a constructed dataset is shown followed by the 

data separated into two no-interaction cells. Last is a heat map illustrating the difference each pair is 

from the environmental average. 

 

 
Figure 15: In order from left to right, the original data of sorghum phenotypes is shown followed by the 

data separated into two no-interaction cells. Last is a heat map illustrating the difference each pair is 

from the environmental average. 

 

 
Figure 16: In order from left to right, the original data of rice phenotypes is shown followed by the data 

separated into two no-interaction cells. Last is a heat map illustrating the difference each pair is from the 

environmental average. 

 

In order to evaluate the effectiveness of each model with the different datasets, the 

information was combined as follows. For each unique experimental design using both the 

optimized and random designs as seen in Figure 17 and Figure 18, respectively, the model 

was tested using the constructed data, the sorghum data, and the rice data. From there, the 
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data that was planted in each experimental design was directly applied in the new model. 

Using the data that was planted, all of the pairs within a cell that could be, were inferred. If 

no inference could be made, the environment and genotype average was used within the cell.  

Once the cells were completed as much as possible, a model was created and used to 

predict the original phenotypes in each dataset. The differences between the predicted 

phenotypes and original phenotypes were summarized by calculating the sum of squared 

error. As seen in Figure 17 and Figure 18, for the first two datasets in all but one experiment, 

the optimized model had a lower SSE compared to the random model. This indicates that 

when the Biclustering model can effectively find no-interaction cells, the results are 

favorable. The results of the rice dataset indicate that when not every genotype/environment 

pair can be planted, like in the case where only nine observations were used, the optimization 

model performs better than randomly planting genotypes in environments. 

 

Constructed Model - 

Optimized  

Sorghum Model –  

Optimized  

Rice Model –  

Optimized 

Pairs Planted 12 11 10 9 8  12 11 10 9 8  12 11 10 9 8 

SSE - 

Combined  

6x4 Cell 57 63 74 92 82  55,287 55,974 97,743 82,617 61,326  259 150 179 186 223 

SSE –  

3x4 Cell 1 0 0 0 0 21  16,502 18,216 33,852 32,585 27,459  82 33 58 113 61 

SSE –  

3x4 Cell 2 0 8 29 38 0  20,205 18,677 20,211 24,968 20,205  140 124 120 71 140 

SSE – Sum of 

Cell 1 & Cell 2 0 8 29 38 21  36,707 36,893 54,063 57,553 47,664  221 157 178 184 201 

Figure 17: Summary of sum of squared error for each optimized experimental design and dataset. 

                  

 

Constructed Model –  

Random  

Sorghum Model –  

Random  

Rice Model –  

Random 

Pairs Planted 12 11 10 9 8  12 11 10 9 8  12 11 10 9 8 

SSE - Combined 

6x4 Cell 64 72 78 82 90  66,623 64,233 60,425 66,396 62,708  122 109 109 150 166 

SSE –  

3x4 Cell 1 3 3 8 8 8  24,732 24,732 23,234 23,234 23,234  44 44 44 44 44 

SSE –  

3x4 Cell 2 4 29 29 32 38  26,587 22,903 22,903 37,883 32,026  83 72 72 152 121 

SSE – Sum of 

Cell 1 & Cell 2 7 32 37 40 46  51,319 47,635 46,137 61,117 55,260  127 116 116 196 165 

Figure 18: Summary of sum of squared error for each random experimental design and dataset. 
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4.2 Genotypic and Environment Constraints 

This next section evaluates how planting designs can be altered to incorporate 

constraints that are common in commercial practice. A dataset containing ten genotypes and 

four environments was constructed to illustrate how the following constraints affected the 

design of a planting pattern for optimized and random models. Figure 19 and Figure 20 

include a series of experimental designs. Figure 19(a) and Figure 20(a) include the minimum 

number of observations to infer every cell. No other constraints are added. In Figure 19(b) 

and Figure 20(b), a constraint is added to limit the number of genotypes that can be planted 

in any one environment. This constraint is valuable in two ways. In practice, every location 

has a set amount of area to be used for planting. Second, multiple locations need to be 

planted to determine how genotypes perform across different environments. As shown in 

Figure 19(b), no new observations need to be added in order to infer every genotype/ 

environment pair. The observations are simply shifted so that no more than three genotypes 

are in an environment within a cell. Figure 19(c) and Figure 20(c) illustrate how the 

experimental planting design would change if a genotype needed to be planted in more than 

one environment if it was planted at all. In practice, a genotype is planted in multiple 

environments to evaluate its performance. In the optimized series of plots, when a constraint 

is added that requires a genotype to be planted in more than two environments, an 

experimental design cannot be created where every pair can be inferred if only sixteen pairs 

are planted. Therefore, Figure 19(d) and Figure 20(d) were created to show that more 

observations were required to infer every pair. With additional constraints, the random 

models do not do as well in terms of the cells that can be inferred. 
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A) Optimized –  

Plant 16 

 

 B) Optimized –  

Plant 16 

Environment 

Constraint 

 

 C) Optimized –  

Plant 16  

Variety Constraint 

 

 D) Optimized – 

 Plant 20 

Variety Constraint 

 

 1𝐴          1𝐴          1𝐴          1𝐴         

G
en

o
ty

p
e 

2𝐴          2𝐴          2𝐴          2𝐴         
3𝐴          3𝐴          3𝐴          3𝐴         
4𝐴          4𝐴          4𝐴          4𝐴         
1𝐵          1𝐵          1𝐵          1𝐵         
2𝐵          2𝐵          2𝐵          2𝐵         
3𝐵          3𝐵          3𝐵          3𝐵         

 4𝐵          4𝐵          4𝐵          4𝐵         
 5𝐵          5𝐵          5𝐵          5𝐵         
 6𝐵          6𝐵          6𝐵          6𝐵         

  - - - -   - - - 3 _ B
 

-   - - - -   - - - - 

  1 2 3 4   1 2 3 4   1 2 3 4   1 2 3 4 

Environment 

Figure 19: Results of using optimization to create a planting design. This sequence of images explores 

how the planting pattern changes with additional constraints. 

 

 

 

A) Random –  

Plant 16 

 

 B) Random –  

Plant 16  

Environment 

Constraint 

 

 C) Random –  

Plant 16  

Variety Constraint 

 

 D) Random –  

Plant 20 

Variety Constraint 

 

 1𝐴          1𝐴          1𝐴          1𝐴 n
o 

n
o 

n
o 

n
o 

G
en

o
ty

p
e 

2𝐴          2𝐴          2𝐴          2𝐴 1 0 0 1 

3𝐴          3𝐴          3𝐴          3𝐴 1 1 0 1 
4𝐴          4𝐴          4𝐴          4𝐴 0 1 1 1 

1𝐵          1𝐵          1𝐵          1𝐵 n
o 

n
o 

n
o 

n
o 2𝐵          2𝐵          2𝐵          2𝐵 1 1 0 1 

3𝐵          3𝐵          3𝐵          3𝐵 1 1 1 1 

 4𝐵          4𝐵          4𝐵          4𝐵 n
o 

n
o 

n
o 

n
o  5𝐵          5𝐵          5𝐵          5𝐵 1 0 1 1 

 6𝐵          6𝐵          6𝐵          6𝐵 1 0 1 0 
  - - - -   - - - 3 _ B

 

-   - - - -   - - - - 
  1 2 3 4   1 2 3 4   1 2 3 4   1 2 3 4 

Environment 

Figure 20: Results of randomly planting observations to create a planting design. This sequence of images 

explores how the planting pattern changes with additional constraints. 

 

Figure 21 and Figure 22 show the exact data that was analyzed using each of the 

different experimental designs that were created. The biclustering algorithm again split the 

data into two cells. The first was a 4x4 cell and the second was a 6x4 cell.  
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Figure 21: In order from left to right, the original data of sorghum phenotypes is shown followed by the 

data separated into two no-interaction cells. 

 

             
Figure 22: In order from left to right, the original data of rice phenotypes is shown followed by the data 

separated into two no-interaction cells. Last is a heat map illustrating the difference each pair is from the 

environmental average. 

 

Figure 23 summarizes the error that resulted for each of the four variations of the optimized 

models. The goal of this comparison was to see how each constraint affected the error of the 

model.  

 
Sorghum Model –  

Optimized  

Rice Model –  

Optimized 

Pairs Planted Std-16 Env-16 Geno-16 Geno-20   Std-16 Env-16 Geno-16 Geno-20  

SSE - Combined  

10x4 Cell 353,287 210,769 138,111 154,075  112 132 219 93 

SSE – 4x4 Cell 1 127,998 78,609 54,814 55,491  46 46 36 31 

SSE – 6x4 Cell 2 193,118 124,692 63,759 88,213  36 81 123 28 

SSE – Sum of  

Cell 1 & Cell 2 321,116 203,301 118,573 143,704  82 127 159 59 

Figure 23: Summary of sum of squared error for each optimized experimental design and dataset. 

 

Adding additional constraints to the first model for the sorghum data has a 

considerable impact on the reduction of SSE that results. Requiring the models to rely on 
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multiple environments and genotypes provides enhanced information to describe the cell. 

The rice data did not perform as consistently between models; however, it is evident that the 

model with the lowest SSE was the last model with the additional constraint of the 

requirement that a genotype needed to be planted in multiple environments. The highest SSE 

did result when the model was unable to infer every genotype/environment pair. This 

indicates that when a planting design can be constructed to reach every genotype/ 

environment pair, the inferences are positively affecting the model and resulting in less 

residual error. 
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CHAPTER 5. CONCLUSION 

There are several methods that exist to quantify GxE interaction. Depending on the 

goal in mind and the dataset available, differing methods have varying degrees of success. 

The primary goal of this research was to find a way to get an increased understanding about 

phenotypic performance in the presence of limited resources. Therefore, it was validated that 

using the Biclustering model is an effective method to determine what genotypes and 

environments have no interaction. By shuffling a dataset to find no-interaction cells, the 

Biclustering model is quantifying the GxE interaction. This model is not only effective for 

sparse data, but it has also been shown to be as effective as other methods when used to 

classify the GxE interaction for complete datasets involving both simple and complex crops.  

To evaluate the effectiveness of the optimization model, the Biclustering model was 

utilized to determine genotypes and environments with minimal interaction. Using the 

subsets of no-interaction cells found by the Biclustering model, the information was used to 

illustrate that information can be gained when crops are planted according to a strategically 

designed planting plan. The information gained is an inference of the performance of other 

genotypes in unplanted environments. Known phenotypic data from complete planting plans 

was compared to new models to illustrate the effectiveness of the optimized and random 

models.  

In practice, planting plans need to be constructed before crops are planted in order to 

save resources. Optimizing planting plans can be extended to be applied before crops are 

planted in the fields. For this to be successful, breeders and researchers need to continue to 

improve their understanding of what genotypes and environments are related so that the 

inferences made about unplanted genotype/environment pairs reflect the truth. Using the 
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Biclustering model is just one way to understand the relationship between genotypes and 

their environments. As the understanding of how genotypes perform in certain environments 

increases, this research can become an effective approach to save resources because more 

information can be obtained from the genotypes and environments that are already being 

planted.  
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